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Background & Definitions



Background & Definitions

• The extremal number ex(n,H) for a graph H is the
maximum possible number of edges in a graph G on n
vertices that does not contain a H as a subgraph.

• Call such a graph H-free.
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Background & Definitions

Classical result of Turán (1941) and Erdős-Stone (1946):

Erdős-Stone Theorem

ex(n,H) =
(
1− 1

χ(H)− 1

)(
n
2

)
+ o(n2)
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Background & Definitions

• This gives asymptotic behavior of ex(n,H) when χ(H) ≥ 3,
but what about bipartite graphs?

• Answer: Very tricky!
• See survey of Füredi and Simonovits, 2013 (97 pages!)
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Background & Definitions

• Closely related problem: count H-free graphs.
• Explicitly, find |Fn(H)|, the number of (labeled) graphs on
n vertices that do not contain H as a subgraph.

• How is this related to finding ex(n,H)?
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Background & Definitions

Trivial bounds

• Lower bound: |Fn(H)| ≥ 2ex(n,H)

• Upper bound: |Fn(H)| ≤
ex(n,H)∑
i=0

((n
2
)
i

)
= 2O(ex(n,H) log(n))

• Question: How to eliminate log(n) factor?
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Background & Definitions

Better bounds

• In general, |Fn(H)| = 2ex(n,H)+o(n2), proved by Erdős, Frankl,
and Rödl in 1986.

• If χ(H) ≥ 3, then this means |Fn(H)| = 2(1+o(1)) ex(n,H)

• But if H is a forest, |Fn(H)| = 2Θ(ex(n,H) log(n))
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Background & Definitions

Conjecture (Erdős, Frankl, and Rödl, 1986):
For any H containing a cycle,

|Fn(H)| = 2(1+o(1)) ex(n,H)

• False!
• Counterexample: |Fn(C6)| ≥ 2(1+c) ex(n,H) for some c > 0;
Morris and Saxton (2016).
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The Problem



Background & Definitions

New Conjecture
For any H containing a cycle,

|Fn(H)| = 2O(ex(n,H))
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Progress

• Known for C4, C6, and C10.
• Known for K2,t, K3,t, and Ks,t with t > (s− 1)!.
• ”Almost” known for some others - e.g. |Fn(C2ℓ)| = 2O(n1+1/ℓ).
Known that ex(n, C2ℓ) = O(n1+1/ℓ), conjectured to be sharp.

• Known for k-uniform hypergraphs with χ(H) > k
(non-degenerate case).
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Methods

• Main technique: hypergraph containers (Balogh, Morris,
and Samotij, 2015; Saxton and Thomason, 2015)

• Gives a way to count independent sets in hypergraphs.

• Application: create hypergraph Z whose vertices are the
edges of Kn and whose edges are all copies of H in Kn.

• Then H-free graphs on n vertices correspond to
independent sets in Z .
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Containers Method

• Broad strokes: for a hypergraph Z satisfying certain
”niceness” properties, there exists a family of containers
C ⊆ P(V(Z)) so that each independent set in Z is
contained in some C ∈ C.

• So |Fn(H)| ≤ (# containers) · 2size of max container
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Containers

• ”Niceness”: In general, in any graph with more than
ex(n,H) edges, need to prove there are ”many” and
”well-distributed” copies of H (a supersaturation
condition) in order to apply containers.

• Supersaturation results often very hard to prove
• ”If only he had used his genius for niceness instead of evil”

14



A New Hope

• Question: Possible to prove supersaturation without
knowing ex(n,H)?

• Answer: Maybe! Paper by Balogh, Liu, and Sharifzadeh
(2016) counting k-arithmetic progression free subsets of
[n].

• Sample smaller set of numbers, show they induce many
k-APs, end up having to bound ratio of ex(m)

ex(n) for m < n.
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Our Contribution



Our result

Main Theorem
If H is any graph containing a cycle, and ex(n,H) = O(nα) for
some α ∈ (1, 2), then

|Fn(H)| = 2O(nα)

In particular, if ex(n,H) = Θ(nα), then |Fn(H)| = 2O(ex(n,H)).
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Proof Ideas

• First: Inductive application of containers. Developed by
Morris and Saxton in paper on C2ℓ-free graphs (2016).

• Second: Prove supersaturation result by bounding
number of copies of H in small random subgraphs.
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Notation

Notation

• γ > 1 is a constant depending on H
• vH = # vertices of H
• eH = # edges of H
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Supersaturation Condition

Supersaturation Condition
Let k be any constant depending only on H. If for every graph
G on n vertices with m = γt · k · nα edges, there exists a
subset Z of all copies of H in G so that

∆ℓ(Z) ≤
(

nα
m(t+ 1)3

)ℓ−1
· |Z|
m

for all ℓ ∈ {1, . . . , eH} then |Fn(H)| = 2O(nα).

∆ℓ(Z) = maximum number of copies of H in Z that contain any
subset of ℓ edges in G.
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Proof of Supersaturation

For ℓ = eH, the condition

∆ℓ(Z) ≤
(

nα
m(t+ 1)3

)ℓ−1
· |Z|
m

reduces to
|Z| ≥ (γt · k(t+ 1)3)eH−1 · m.

Show only this case here - gives basic idea of the proof.

20



Proof of Supersaturation

• Goal: given graph G with m = γt · k · nα edges, want to
show there at least (γt · k(t+ 1)3)eH−1 · m copies of H

• Strategy: show that random small subgraph of G gives
many copies of H.
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Proof of Supersaturation

Notation

• R = uniformly random set of pn vertices in G
• p ∈ (0, 1), yet to be chosen
• X = number of copies of H in induced subgraph G[R]
(random variable)

• Z = total number of copies of H in G (what we’re trying to
bound)
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Proof of Supersaturation

Bounds

• X ≥ e(G[R])− ex(pn,H)
• So E[X] ≥ E[e(G[R])]− ex(pn,H)

And

• E[X] = Z ·
( n−vH
pn−vH

)
/
( n
pn
)
≈ Z · pvH

• E[e(G[R])] = m ·
( n−2
pn−2

)
/
( n
pn
)
≈ m · p2

Solve to get:
Z ≥ (mp2 − ex(pn,H))p−vH .
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Proof of Supersaturation

Goal: Show that random subgraph G[R] of correct size pn has
many copies of H. Use this to bound total number Z of copies.

Show:

Z ≥ (mp2 − ex(pn,H))p−vH ≥ (γt · k(t+ 1)3)eH−1 · m
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Proof of Supersaturation

Approach

• Do some algebra to get upper and lower bonds on p
• Along the way, use fact that ex(pn,H)

nα ≤ pαnα
nα = pα

• End up with upper bound ≥ lower bound if and only if

eH − 1
vH − 2

<
1

2− α
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Proof of Supersaturation

eH − 1
vH − 2

<
1

2− α
?

Definition: m2(H) = max
{
e(F)−1
v(F)−2 : F ⊆ H with e(F) > 1

}
.

Bohman and Keevash, 2009
For any H containing a cycle,

ex(n,H) ≥ n2−1/m2(H) · log(n)
1

eH−1 .

Since nα ≥ ex(n,H),

nα ≥ n2−1/m2(H) · log(n)
1

eH−1 .
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Proof of Supersaturation

eH − 1
vH − 2

<
1

2− α
?

Know:
nα−2+1/m2(H) > log(n)

1
eH−1

So
α− 2+ 1/m2(H) > 0

And in particular,
α− 2+ vH − 2

eH − 1 > 0
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Summary

Main Ideas in Proof of Supersaturation

• Probabilistic method: show that random subgraph G[R] of
correct size has many copies of H.

• Use assumption on growth rate of ex(n,H) to bound ratio
ex(pn,H)

nα .
• Use bound on ex(n,H) in terms of 2-density m2(H) to show
there is a gap between upper and lower bounds.
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Applications



Reproving Old Results

• Reproves non-degenerate case (where χ(H) ≥ 3)
• Reproves |Fn(H)| = 2O(ex(n,H)) for C4, C6, and C10, as well as
K2,t, K3,t, and Ks,t with t > (s− 1)!.

• Reproves |Fn(C2ℓ)| = 2O(n1+1/ℓ) - result of Morris and
Saxton (2016)

• Hypergraphs: reproves recent result of Balogh, Nayaranan,
and Skokan (2017) for linear cycles: |Fn(Crk)| = 2O(ex(n,Crk))

• The list goes on!
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New results

Infinite Sequences
If there is a constant ε > 0 such that
ex(n,H) = Ω(n2−1/m2(H)+ε), then there exist an infinite
sequence {ni} ⊆ N and a constant C > 0 such that

|Fn(H)| ≤ 2C·ex(n,H)

for all i.

In particular, this holds for all even cycles, C2ℓ. (Lubotzky,
Phillips, and Sarnak, 1988).
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Questions?
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