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Background & Definitions

- The extremal number ex(n, H) for a graph H is the
maximum possible number of edges in a graph G on n
vertices that does not contain a H as a subgraph.

- Call such a graph H-free.



Background & Definitions

Classical result of Turan (1941) and Erdds-Stone (1946):

Erd6s-Stone Theorem

ex(n, H) = <1 - X(H;—1> (g) +o(n?)



Background & Definitions

- This gives asymptotic behavior of ex(n, H) when x(H) > 3,
but what about bipartite graphs?

- Answer: Very tricky!

- See survey of Fiiredi and Simonovits, 2013 (97 pages!)



Background & Definitions

- Closely related problem: count H-free graphs.

- Explicitly, find |Fn(H)|, the number of (labeled) graphs on
n vertices that do not contain H as a subgraph.

- How is this related to finding ex(n, H)?



Background & Definitions

Trivial bounds

- Lower bound: |F,(H)| >

ex(n,H) (n)
. . 2) ) _
Upper bound: |Fp(H)| < z_g < : >_
- Question: How to eliminate log(n) factor?



Background & Definitions

Better bounds

- In general, |Fn(H)| = , proved by Erdés, Frankl,
and Rodl in 1986.

- If x(H) > 3, then this means |Fn(H)| =
- Butif H is a forest, |Fn(H)| =



Background & Definitions

Conjecture (Erdds, Frankl, and Rodl, 1986):
For any H containing a cycle,

[ Fn(H)| =

- False!

- Counterexample: |F,(Cs)| > for some ¢ > 0;
Morris and Saxton (2016).



The Problem




Background & Definitions

New Conjecture
For any H containing a cycle,

[ Fn(H)| =
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Progress

+ Known for C,4, Cg, and Cyg.
- Known for Ky t, K3 t, and Ksr with t > (s — 1)!.

- "Almost” known for some others - e.g. | Fn(Cof)| = 20079,
Known that ex(n, C¢) = O(n"+"/¢), conjectured to be sharp.

- Known for k-uniform hypergraphs with x(H) > R
(non-degenerate case).
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- Main technique: hypergraph containers (Balogh, Morris,
and Samotij, 2015; Saxton and Thomason, 2015)

- Gives a way to count independent sets in hypergraphs.

- Application: create hypergraph Z whose vertices are the
edges of K, and whose edges are all copies of H in Kp,.

- Then H-free graphs on n vertices correspond to
independent sets in Z.
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Containers Method

- Broad strokes: for a hypergraph Z satisfying certain
"niceness” properties, there exists a family of containers
C C P(V(2)) so that each independent setin Z is
contained in some C € C.

- So ‘FH(H)| < (# contamers) . 7size of max container
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Containers

- "Niceness”: In general, in any graph with more than
ex(n, H) edges, need to prove there are "many” and
"well-distributed” copies of H (a supersaturation
condition) in order to apply containers.

- Supersaturation results often very hard to prove

* "If only he had used his genius for niceness instead of evil”
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A New Hope

- Question: Possible to prove supersaturation without
knowing ex(n, H)?

- Answer: Maybe! Paper by Balogh, Liu, and Sharifzadeh
(2016) counting k-arithmetic progression free subsets of
[n].

- Sample smaller set of numbers, show they induce many

k-APs, end up having to bound ratio of ZXX((',’Z)) form < n.
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Our Contribution




Main Theorem
If H is any graph containing a cycle, and ex(n, H) = O(n%) for
some «a € (1,2), then

[ Fa(H) =

In particular, if ex(n, H) = ©(n%), then |Fy(H)| =



Proof Ideas

- First: Inductive application of containers. Developed by
Morris and Saxton in paper on C,-free graphs (2016).

- Second: Prove supersaturation result by bounding
number of copies of H in small random subgraphs.



Notation

- v > 1is a constant depending on H
- vy = # vertices of H
- ey = # edges of H



Supersaturation Condition

Supersaturation Condition

Let k be any constant depending only on H. If for every graph
G on n vertices with m = ~t - R - n® edges, there exists a
subset Z of all copies of H in G so that

AZ) < <n)3>e 12l

m(t+1 m

forall ¢ e {1,...,eq} then | Fn(H)| = 20(n*),

A (Z) = maximum number of copies of H in Z that contain any
subset of £ edges in G.



Proof of Supersaturation

For ¢ = ey, the condition

> \“" |2
29 (i) w

reduces to
2] >

Show only this case here - gives basic idea of the proof.
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Proof of Supersaturation

- Goal: given graph G with m = 4% k- n® edges, want to
show there at least copies of H

- Strategy: show that random small subgraph of G gives
many copies of H.
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Proof of Supersaturation

Notation

- R = uniformly random set of pn vertices in G
- p €(0,1), yet to be chosen

- X =number of copies of H in induced subgraph G[R]
(random variable)

- Z = total number of copies of H in G (what we're trying to
bound)
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Proof of Supersaturation

Bounds
- X > e(G[R]) — ex(pn, H)
- So E[X] > E[e(G[R])] — ex(pn, H)
And
’ E[X] =Z- (pnniViH)/(pnn) ~Z-p
- E[e(GIRD] = m- ([73) /() ~ m- p?

Solve to get:
Z > (mp® —ex(pn, H))p~".
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Proof of Supersaturation

Goal: Show that random subgraph G[R] of correct size pn has
many copies of H. Use this to bound total number Z of copies.

Show:

Z > (mp? —ex(pn, H))p~" >

2%



Proof of Supersaturation

Approach

- Do some algebra to get upper and lower bonds on p
- Along the way, use fact that % < p?—ﬂa =

- End up with upper bound > lower bound if and only if
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Proof of Supersaturation

?

Definition: m,(H) = max { §H=3 : F € H with e(F) > 1}.

Bohman and Keevash, 2009
For any H containing a cycle,

ex(n, H) > n?=V/ma(H) . Iog(n)ﬁ.

Since n® > ex(n, H),

n® > n2=1/m(H) . Iog(n)ﬁ.
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Proof of Supersaturation

Know:
;

pe=2+1/maH) 5 jog(n)en—
So
a—2+1/my(H)>0
And in particular,
Vy — 2
ey —1

oa—2+ >0
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Main Ideas in Proof of Supersaturation

- Probabilistic method: show that random subgraph G[R] of
correct size has many copies of H.
- Use assumption on growth rate of ex(n, H) to bound ratio
ex(pn,H)
n® -

- Use bound on ex(n, H) in terms of 2-density m,(H) to show
there is a gap between upper and lower bounds.
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Applications




Reproving Old Results

- Reproves non-degenerate case (where x(H) > 3)

- Reproves | Fp(H)| = 20(ex(nM) for ¢, Cs, and Cyo, as well as
Kot Kz, and Ks ¢ with t > (s — 1)L

- Reproves | Fy(Cyr)| = 220 - result of Morris and
Saxton (2016)

- Hypergraphs: reproves recent result of Balogh, Nayaranan,
and Skokan (2017) for linear cycles: |Fn(Ch)| = 29(e("6))

- The list goes on!
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Infinite Sequences

If there is a constant e > 0 such that
ex(n, H) = Q(n?>~1/m(M+2) then there exist an infinite

sequence {n;} € N and a constant C > 0 such that
[ Fn(H)| <

for all /.

In particular, this holds for all even cycles, Cy. (Lubotzky,
Phillips, and Sarnak, 1988).
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Questions?
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