Counting H-free graphs for bipartite H

Joint work with Asaf Ferber and Wojciech Samotij

Gwen McKinley
July 26, 2017
Massachusetts Institute of Technology

Outline

- Background \& definitions
- Conjecture, progress, \& proof methods
- Our result
- Proof sketch \& applications

Background \& Definitions

Background \& Definitions

- The extremal number ex (n, H) for a graph H is the maximum possible number of edges in a graph G on n vertices that does not contain a H as a subgraph.
- Call such a graph H-free.

Background \& Definitions

Classical result of Turán (1941) and Erdős-Stone (1946):

Erdős-Stone Theorem

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Background \& Definitions

- This gives asymptotic behavior of ex (n, H) when $\chi(H) \geq 3$, but what about bipartite graphs?
- Answer: Very tricky!
- See survey of Füredi and Simonovits, 2013 (97 pages!)

Background \& Definitions

- Closely related problem: count H-free graphs.
- Explicitly, find $\left|\mathcal{F}_{n}(H)\right|$, the number of (labeled) graphs on n vertices that do not contain H as a subgraph.
- How is this related to finding ex (n, H) ?

Background \& Definitions

Trivial bounds

- Lower bound: $\left|\mathcal{F}_{n}(H)\right| \geq 2^{\operatorname{ex}(n, H)}$
- Upper bound: $\left|\mathcal{F}_{n}(H)\right| \leq \sum_{i=0}^{\operatorname{ex}(n, H)}\left(\begin{array}{c}n \\ 2 \\ i\end{array}\right)=2^{O(\operatorname{ex}(n, H) \log (n))}$
- Question: How to eliminate $\log (n)$ factor?

Background \& Definitions

Better bounds

- In general, $\left|\mathcal{F}_{n}(H)\right|=2^{\operatorname{ex}(n, H)+o\left(n^{2}\right)}$, proved by Erdős, Frankl, and Rödl in 1986.
- If $\chi(H) \geq 3$, then this means $\left|\mathcal{F}_{n}(H)\right|=2^{(1+o(1)) \operatorname{ex}(n, H)}$
- But if H is a forest, $\left|\mathcal{F}_{n}(H)\right|=2^{\Theta(\operatorname{ex}(n, H) \log (n))}$

Background \& Definitions

Conjecture (Erdős, Frankl, and Rödl, 1986):
For any H containing a cycle,

$$
\left|\mathcal{F}_{n}(H)\right|=2^{(1+o(1)) \operatorname{ex}(n, H)}
$$

- False!
- Counterexample: $\left|\mathcal{F}_{n}\left(C_{6}\right)\right| \geq 2^{(1+c)}$ ex(n,H) for some $c>0$; Morris and Saxton (2016).

The Problem

Background \& Definitions

New Conjecture
For any H containing a cycle,

$$
\left|\mathcal{F}_{n}(H)\right|=2^{O(\operatorname{ex}(n, H))}
$$

Progress

- Known for C_{4}, C_{6}, and C_{10}.
- Known for $K_{2, t}, K_{3, t}$, and $K_{s, t}$ with $t>(s-1)$!.
- "Almost" known for some others - e.g. $\left|\mathcal{F}_{n}\left(C_{2 \ell}\right)\right|=2^{O\left(n^{1+1 / \ell}\right)}$. Known that ex $\left(n, C_{2 \ell}\right)=O\left(n^{1+1 / \ell}\right)$, conjectured to be sharp.
- Known for k-uniform hypergraphs with $\chi(H)>k$ (non-degenerate case).

Methods

- Main technique: hypergraph containers (Balogh, Morris, and Samotij, 2015; Saxton and Thomason, 2015)
- Gives a way to count independent sets in hypergraphs.
- Application: create hypergraph \mathcal{Z} whose vertices are the edges of K_{n} and whose edges are all copies of H in K_{n}.
- Then H-free graphs on n vertices correspond to independent sets in \mathcal{Z}.

Containers Method

- Broad strokes: for a hypergraph \mathcal{Z} satisfying certain "niceness" properties, there exists a family of containers $\mathcal{C} \subseteq \mathcal{P}(V(\mathcal{Z}))$ so that each independent set in \mathcal{Z} is contained in some $C \in \mathcal{C}$.
- So $\left|\mathcal{F}_{n}(H)\right| \leq$ (\# containers) $\cdot 2^{\text {size of max container }}$

Containers

- "Niceness": In general, in any graph with more than ex (n, H) edges, need to prove there are "many" and "well-distributed" copies of H (a supersaturation condition) in order to apply containers.
- Supersaturation results often very hard to prove
- "If only he had used his genius for niceness instead of evil"

A New Hope

- Question: Possible to prove supersaturation without knowing ex (n, H) ?
- Answer: Maybe! Paper by Balogh, Liu, and Sharifzadeh (2016) counting k-arithmetic progression free subsets of [n].
- Sample smaller set of numbers, show they induce many k-APs, end up having to bound ratio of $\frac{\mathrm{ex}(m)}{\mathrm{ex}(n)}$ for $m<n$.

Our Contribution

Our result

Main Theorem

If H is any graph containing a cycle, and ex $(n, H)=O\left(n^{\alpha}\right)$ for some $\alpha \in(1,2)$, then

$$
\left|\mathcal{F}_{n}(H)\right|=2^{O\left(n^{\alpha}\right)}
$$

In particular, if ex $(n, H)=\Theta\left(n^{\alpha}\right)$, then $\left|\mathcal{F}_{n}(H)\right|=2^{O(e x(n, H))}$.

Proof Ideas

- First: Inductive application of containers. Developed by Morris and Saxton in paper on $C_{2 \ell}$-free graphs (2016).
- Second: Prove supersaturation result by bounding number of copies of H in small random subgraphs.

Notation

Notation

- $\gamma>1$ is a constant depending on H
- $v_{H}=\#$ vertices of H
- $e_{H}=\#$ edges of H

Supersaturation Condition

Supersaturation Condition

Let k be any constant depending only on H. If for every graph G on n vertices with $m=\gamma^{t} \cdot k \cdot n^{\alpha}$ edges, there exists a subset \mathcal{Z} of all copies of H in G so that

$$
\Delta_{\ell}(\mathcal{Z}) \leq\left(\frac{n^{\alpha}}{m(t+1)^{3}}\right)^{\ell-1} \cdot \frac{|\mathcal{Z}|}{m}
$$

for all $\ell \in\left\{1, \ldots, e_{H}\right\}$ then $\left|\mathcal{F}_{n}(H)\right|=2^{0\left(n^{\alpha}\right)}$.
$\Delta_{\ell}(\mathcal{Z})=$ maximum number of copies of H in \mathcal{Z} that contain any subset of ℓ edges in G.

Proof of Supersaturation

For $\ell=e_{H}$, the condition

$$
\Delta_{\ell}(\mathcal{Z}) \leq\left(\frac{n^{\alpha}}{m(t+1)^{3}}\right)^{\ell-1} \cdot \frac{|\mathcal{Z}|}{m}
$$

reduces to

$$
|\mathcal{Z}| \geq\left(\gamma^{t} \cdot k(t+1)^{3}\right)^{e_{H}-1} \cdot m
$$

Show only this case here - gives basic idea of the proof.

Proof of Supersaturation

- Goal: given graph G with $m=\gamma^{t} \cdot k \cdot n^{\alpha}$ edges, want to show there at least $\left(\gamma^{t} \cdot k(t+1)^{3}\right)^{e_{H}-1} \cdot m$ copies of H
- Strategy: show that random small subgraph of G gives many copies of H.

Proof of Supersaturation

Notation

- $R=$ uniformly random set of $p n$ vertices in G
- $p \in(0,1)$, yet to be chosen
- $X=$ number of copies of H in induced subgraph $G[R]$ (random variable)
- $Z=$ total number of copies of H in G (what we're trying to bound)

Proof of Supersaturation

Bounds

- $X \geq e(G[R])-\operatorname{ex}(p n, H)$
- So $\mathbb{E}[X] \geq \mathbb{E}[e(G[R])]-\operatorname{ex}(p n, H)$

And

$$
\begin{aligned}
& \mathbb{E}[X]=Z \cdot\binom{n-v_{H}}{p n-V_{H}} /\binom{n}{p} \approx Z \cdot p^{V_{H}} \\
& \cdot \mathbb{E}[e(G[R])]=m \cdot\binom{n-2}{p n-2} /\binom{n}{p n} \approx m \cdot p^{2}
\end{aligned}
$$

Solve to get:

$$
Z \geq\left(m p^{2}-e x(p n, H)\right) p^{-v_{H}} .
$$

Proof of Supersaturation

Goal: Show that random subgraph $G[R]$ of correct size $p n$ has many copies of H. Use this to bound total number Z of copies.

Show:

$$
Z \geq\left(m p^{2}-e x(p n, H)\right) p^{-V_{H}} \geq\left(\gamma^{t} \cdot k(t+1)^{3}\right)^{e_{H}-1} \cdot m
$$

Proof of Supersaturation

Approach

- Do some algebra to get upper and lower bonds on p
- Along the way, use fact that $\frac{\operatorname{ex}(p n, H)}{n^{\alpha}} \leq \frac{p^{\alpha} n^{\alpha}}{n^{\alpha}}=p^{\alpha}$
- End up with upper bound \geq lower bound if and only if

$$
\frac{e_{H}-1}{v_{H}-2}<\frac{1}{2-\alpha}
$$

Proof of Supersaturation

$\frac{e_{H}-1}{v_{H}-2}<\frac{1}{2-\alpha} ?$
Definition: $m_{2}(H)=\max \left\{\frac{e(F)-1}{v(F)-2}: F \subseteq H\right.$ with $\left.e(F)>1\right\}$.

Bohman and Keevash, 2009

For any H containing a cycle,

$$
\operatorname{ex}(n, H) \geq n^{2-1 / m_{2}(H)} \cdot \log (n)^{\frac{1}{e_{H}-1}} .
$$

Since $n^{\alpha} \geq \operatorname{ex}(n, H)$,

$$
n^{\alpha} \geq n^{2-1 / m_{2}(H)} \cdot \log (n)^{\frac{1}{e_{H}-1}}
$$

Proof of Supersaturation

$$
\frac{e_{H}-1}{v_{H}-2}<\frac{1}{2-\alpha} ?
$$

Know:

$$
n^{\alpha-2+1 / m_{2}(H)}>\log (n)^{\frac{1}{e_{H}-1}}
$$

So

$$
\alpha-2+1 / m_{2}(H)>0
$$

And in particular,

$$
\alpha-2+\frac{v_{H}-2}{e_{H}-1}>0
$$

Summary

Main Ideas in Proof of Supersaturation

- Probabilistic method: show that random subgraph $G[R]$ of correct size has many copies of H.
- Use assumption on growth rate of ex (n, H) to bound ratio $\frac{\operatorname{ex}(p n, H)}{n^{\alpha}}$.
- Use bound on ex (n, H) in terms of 2-density $m_{2}(H)$ to show there is a gap between upper and lower bounds.

Applications

Reproving Old Results

- Reproves non-degenerate case (where $\chi(H) \geq 3$)
- Reproves $\left|\mathcal{F}_{n}(H)\right|=2^{O(e x(n, H))}$ for C_{4}, C_{6}, and C_{10}, as well as $K_{2, t}, K_{3, t}$, and $K_{s, t}$ with $t>(s-1)!$.
- Reproves $\left|\mathcal{F}_{n}\left(C_{2 \ell}\right)\right|=2^{O\left(n^{1+1 / \ell}\right)}$ - result of Morris and Saxton (2016)
- Hypergraphs: reproves recent result of Balogh, Nayaranan, and Skokan (2017) for linear cycles: $\left|\mathcal{F}_{n}\left(C_{k}^{r}\right)\right|=2^{O\left(e x\left(n, C_{k}^{r}\right)\right)}$
- The list goes on!

New results

Infinite Sequences

If there is a constant $\varepsilon>0$ such that $\operatorname{ex}(n, H)=\Omega\left(n^{2-1 / m_{2}(H)+\varepsilon}\right)$, then there exist an infinite sequence $\left\{n_{i}\right\} \subseteq \mathbb{N}$ and a constant $C>0$ such that

$$
\left|\mathcal{F}_{n}(H)\right| \leq 2^{C \cdot \operatorname{ex}(n, H)}
$$

for all i.
In particular, this holds for all even cycles, $\mathrm{C}_{2 \ell}$. (Lubotzky, Phillips, and Sarnak, 1988).

Questions?

